|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectstatalign.model.ext.plugins.structalign.MultiNormCholesky
public class MultiNormCholesky
Adapted from org.apache.commons.math3.distribution.MultivariateNormalDistribution
| Constructor Summary | |
|---|---|
MultiNormCholesky(double[] means,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and covariance matrix. |
|
| Method Summary | |
|---|---|
org.apache.commons.math3.linear.RealMatrix |
getCovariances()
Gets the covariance matrix. |
double[] |
getMeans()
Gets the mean vector. |
double |
logDensity(double[] vals)
|
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public MultiNormCholesky(double[] means,
double[][] covariances)
throws org.apache.commons.math3.linear.SingularMatrixException,
org.apache.commons.math3.exception.DimensionMismatchException,
org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
means - Vector of means.covariances - Covariance matrix.
org.apache.commons.math3.exception.DimensionMismatchException - if the arrays length are
inconsistent.
org.apache.commons.math3.linear.SingularMatrixException - if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.
org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException| Method Detail |
|---|
public double[] getMeans()
public org.apache.commons.math3.linear.RealMatrix getCovariances()
public double logDensity(double[] vals)
throws org.apache.commons.math3.exception.DimensionMismatchException
org.apache.commons.math3.exception.DimensionMismatchException
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||