|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectstatalign.model.ext.plugins.structalign.MultiNormCholesky
public class MultiNormCholesky
Adapted from org.apache.commons.math3.distribution.MultivariateNormalDistribution
Constructor Summary | |
---|---|
MultiNormCholesky(double[] means,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and covariance matrix. |
Method Summary | |
---|---|
org.apache.commons.math3.linear.RealMatrix |
getCovariances()
Gets the covariance matrix. |
double[] |
getMeans()
Gets the mean vector. |
double |
logDensity(double[] vals)
|
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public MultiNormCholesky(double[] means, double[][] covariances) throws org.apache.commons.math3.linear.SingularMatrixException, org.apache.commons.math3.exception.DimensionMismatchException, org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
means
- Vector of means.covariances
- Covariance matrix.
org.apache.commons.math3.exception.DimensionMismatchException
- if the arrays length are
inconsistent.
org.apache.commons.math3.linear.SingularMatrixException
- if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.
org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
Method Detail |
---|
public double[] getMeans()
public org.apache.commons.math3.linear.RealMatrix getCovariances()
public double logDensity(double[] vals) throws org.apache.commons.math3.exception.DimensionMismatchException
org.apache.commons.math3.exception.DimensionMismatchException
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |